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Introduction

Mean-field interacting particle system

Consider the following interacting particle system:

dthVN = bt(XI{’N7 L{f\l)dt + O—t(Xti,Nv Lil_”v)dB£7 1 S I S N

o LN := LSV, 0y empirical measure
e coefficients
b: Rt x RY x P(RY) — R?
o :RT x RY x P(RY) — RI*™,
e B! ... BN independent BMs in RY
o Xg N - XN iid., and independent of the BMs

& Two fundamental problems
e t — 0o: Long time behaviors (equilibrium)
e N — oo: Macroscopic limit (part of Hilbert's 6th problem)
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From Microscopic to Macroscopic

> Macroscopic limit as N — oo — part of Hilbert's 6th problem.
e Macroscopic limit: Hydrodynamic limit, Thermodynamic
limit, Bose-Einstein condensation

e Boltzmann, Landau, McKean-Vlasov, Vlasov-type Kinetic
equations, etc.

e Convergence rate

e Curse of dimensionality

QO Mean field limit - McKean-Vlasov SDE
dXi = be(Xe, pue)dt + oe(Xe, 111)dBy

where 1 is the law of X;.
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Mean field limit

Mean field interacting particle system:

dXZ’N = bt(X{7N7 L{“V)dt + O't(Xti7Nv L{“V)dB£7 1<i<N (1)

Self-interacting nonlinear diffusion or distribution dependent SDE:

dXt = bt(Xt, Mt)dt + O't(Xt, ,lLt)dBt (2)

Kac's Propagation of chaos (as N — +00)
° Xti’N = [ in law
N .
o [N:=L50" (5th1:\/ = p¢ in law

e Particles get independent when N — 400 for k fixed:

(XIELN? T 7th’N) = (:ut)®k in law
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Applications

Mean-field interacting particle systems have been extensively
studied in recent 40 years due to their wide range of applications in
several fields including physics, chemistry, biology, economics,
mean-field games, financial mathematics, social science, machine
learning and so on.

Physics, Chemistry: ions and electrons in plasmas, molecules
in a fluid, galaxies in large scale cosmological models

Biology: collective behaviors, neuronal network

Economics, finances and Social Science: opinion dynamics,
consensus model, mean field games

Machine learning: deep learning, artificial neural network,
distribution sampling algorithm, stochastic algorithm

etc...
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History

(a) Mark Kac (b) Anatoly Vlasov

The story of these processes started with a stochastic toy model for the
Vlasov equation of plasma proposed by Mark Kac in his paper "Foundations
of kinetic theory (1956)".

Figure:
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History

In 1966 Henry P. McKean published his seminal paper "A class of Markov
processes associated with non-linear parabolic equations”.

Figure:
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Known results

Kac (1956,1958), stochastic toy model for the Vlasov kinetic
equation of plasma

e McKean (1966,1967), non-linear parabolic equations
e Sznitman (1991), Topics in propagation of chaos, Saint-Flour

lecture notes

Propagation of chaos: Macroscopic limit of the interacting
particle system as N — oco. Méléard (1996), Benachour et al.
(1998), Malrieu (2001,2003), Bolley et al. (2007,2010),
Cattiaux et al. (2008), Jabin-Wang (2018), Durmus et al.
(2020), L.-Wu-Zhang (2021), Lacker (2021), Delarue-Tse
(2021), Guillin et al. (2021), etc.

Existence and uniqueness, well-posedness, smoothness and
regularization of the solutions, F.Y. Wang (2018-), X. Zhang
and Rockner (2021), Li-Li-Xie (2020), Hammersley et al.
(2021), Mishura-Veretennikov (2018),
Buckdahn-Li-Peng-Rainer (2017), etc. (and the references

+hAavaia)
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Continued

e Large and moderate deviation principles:

o Empirical measure: Léonard (1987) , S. Feng (1994), Dupuis
et al. (2015), J. Reygner (2018), L.-Wu (2020)

o Weak interacting diffusions: Dawson-Gartner (1987),
Budhiraja-Dupuis-Fischer (2012), Hoeksema et al. (2020),
L-Wu (2023+),

o Freidlin-Wentzell type LDP for McKean-Vlasov SDEs:
Herrmann et al. (2008), Dos Reis et al. (2019), Yuan-suo
(2019), L.-Song-Zhai-Zhang (2022), L.-Qiao-Zhu,
Cheng-L.-Zhu (2023) etc.

e CLT Wang-Zhao-Zhu (2021), Yuan-Suo (2021)
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Continued

e Long time behaviors of the McKean-Vlasov SDE and
Interacting particle system as t — oo. Carrillo-McCann-Villani
(2003), Eberle et al. (2016, 2018), Luo-Wang (2016),
Liang-Majka-Wang (2019), Liu-Wu-Zhang (2021),
Guilin-L.-Wu-Zhang (2022), etc.

e Functional inequalities: Malrieu (2001,2003), Huang-Wang
(2021), Guilin-L.-Wu-Zhang (2022), F.Y. Wang (2023).

e Kinetic case: Villani(2009), Mouhot et al. (2015, 2016),
Herzog-Mattingly (2019), lu-Mattingly (2020),
Guillin-L.-Wu-Zhang (2021), Bao-Wang (2023)

e Others: numerical approximation, slow-fast, switching regime,
path-dependent, delayed, with reflection, SPDE, Mean-field
control...

e Other noises: fractional BM, Lévy, a-stable, GBM...
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Our model: McKean-Vlasov equation with additive noise

e Consider the following nonlinear McKean-Vlasov equation
dX; = V2dB; — VV(X;)dt — V. W @ p(X:)dt  (3)
e confinement potential V : RY — R

e interaction potential W : R x RY = R, W(x,y) = W(y,x)

VW @ pe(Xe) = /d VW ( Xz, y)pe(dy)
R

e The corresponding nonlinear Fokker-Planck equation

Orpir = Dpe + V- [ue(VV + Ve W ® 1] (4)
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Long time behavior

Two important questions:
e Existence and uniqueness of the equilibrium state, i.e. the
limit oo 1= lims o0 Ut. oo Satisfies the following stationary

equation ( see Liu-Wu 2020 SPA):
Apioo + V- [t (VVHV W ® 1) =0

too(dx) = exp(—V/(x)—W % poo(x))dx/C.

e Convergence rate to the limit (exponential or algebraic).
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Free energy

e The free energy of the state v is given by

Ew(v): = H(v|la) + W(x,y)dv(x)dv(y)
/ (5)
= H(v|exp(=V(x) - EW ®v))+c

where
a(dx) = e V¥dx/C.
e The solution i, of the stationary equation of the nonlinear
McKean-Vlasov equation is the critical point of Eyy.
e Mean field entropy

H\/\/(l/) = Ew(l/) — p,Ej\Dl{l:(S) E\/\/(/L), Ve Ml(S) (6)

is just the LDP rate function of the empirical measure for
mean field Gibbs measure (L.-Wu 2020SPA).
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Carrillo-McCann-Villani's result 2003RMI

Assume that
V2V >~y >0

and W(x,y) = Wy(x — y) with W, even and convex. Then
Hu (1) < e 7" Hw (o).

Strategy of the proofs:
e Gradient flow of the free energy, i.e.

Otut = —VHW(/Lt)

e Strictly displacement convex along geodesic, i.e.

V2Hy () > C > 0.

e Logarithmic Sobolev inequalities and mass transportation
inequalities, via either the Bakry-Emery method.
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Our motivations and goals

Remove the convexity assumption on V and W!

Example: Curie-Weiss model

V(x) = B(x*/4 = x*/2), W(x,y) = —BKxy
where 5 > 0 is the inverse temperature.
This model is called ferromagnetic (K > 0) or anti-ferromagnetic
(K <0).

VN
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Mean field model

McKean-Vlasov SDE:

dX; = V2dB; — VV(X;)dt — V. W ® p:(X;)dt,
Vx W@Mt Xt fv W Xt7 )Uf(dy)7

Mean field interacting particle system
dx;N =v2dB] - vv(X{Mdt — Y VoW (xN xY)t,
. JyFLLI<<N
XN =X§, i=1,--- N,
Our Strategy:

e Long-time behavior of IPS: Coupling method, Functional
inequalities.

e From IPS to McKean-Vlasov: Propagation of chaos.
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Propagation of chaos - classic results

e Mean field interacting particle system
dXp" = b(xPN, LYYt + (XY, 1Y) dB] (7)

e Consider the following independent particle system:

° ):(01, e ,):(({V i.i.d., and independent of the BMs
o X} - XN iid. with common law p;
e Sznitman (1991, Synchronous Coupling)
when b is bounded Lipschitz and o is constant
; < c(T
B sup_ i — xi < S
0<t<T VN
Other results by Méléard (1996), Benachour et al. (1998)...
in bounded time intervals, but Not uniform in time!
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Uniform in time propagation of chaos

Uniform in time propagation of chaos is much more difficult!
@ Foranyt>0and 1 </ <N,

W,D(/ugNnut) S P = 1,2

30

C
1e) < N

e Convex potentials: Malrieu (2001, 2003), Cattiaux et al.
(2008), Bolley et al. (2010), Lacker (2023)

e Non-convex potentials: Durmus et al. (2020), L.-Wu-Zhang
(2021 CMP)

e Singular case: Jabin-Wang (2018), Delarue-Tse
(2021),Guillin et al. (2021), Hao-Rdckner-Zhang (2022)

@ Methods: Coupling, Functional inequalities, BBGKY
Strategy...

H(ug"



Coupling method

Coupling method



Coupling method

Approximate componentwise reflection coupling
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Coupling method

Approximate componentwise reflection coupling
First introduced by A Eberle (PTRF 2016)

dX;N = V2\s(1Z)dBY + 75(1ZL)dBE ] — v V(XY )dt
1 N Ui
- > vw N xtNt,
JU#LI<SGSN
dY; N = V2[\s(|1ZI)RidBY + ws(1Z]))dB> — V(Y] N)dt
1
> Wy v,

CN-1,
Jy#£LI<j<N

(9)

o \s(r)?+ms(r)> =1, As(r) =1if r>0, X\s(r) =0if r <6/2.
o Z =X/ —v]/Nand Rl := Iy — 2ei(el)7, where ei(el)7 is
the orthogonal projection onto the unit vector e; := Z}/|Z{|.

@ Strategy for proofs: choose appropriate reference h and use
[td's formula for h(|Z[]). Then let § — 0.



Coupling method
Notations of IPS

o Py law of XM = (XN ... X[N),5 with initial value
XM = x e RV,

° {PgN)}tZO: transition semigroup

o LM generator of (X", X""N) is given by
N
£(N)f(x1, e XN) = ZEEN)f(Xl, S XN)
i=1

LN, xw) = Dif(xa, - o) = ViV(x) - Vif (xa, - xw)

— =Y (VW)(xi, ) - Vif (.- xw)
JF#i
(10)
for any smooth function f on (R9)V.



Coupling method

Invariant probability measure

@ The unique invariant probability measure:
(V) 1
p (dxay - dxy) = Zn exp{—Hn(x1, -+, xn)}dxi -+ dxy

where
N 1
Hn(xi, -, xn) = Z V(x;) + N1 Z W (xi, x;)
i=1 1<i<j<N
is the Hamiltonian, and Zp is the normalization constant
called partition function in statistical mechanics, which is
assumed to be finite.
o Without interaction (i.e. W = 0 or constant), u(V) = o®N
(i.e. the particles are independent), where

da(x) = %e*V(X)dx, C:/ e V¥ dx.
Rd



Coupling method
Conditions on the dissipative rate

e Dissipative rate by(r) of the drift of one single particle at
distance r > 0,

(x =y, =[VV(x) = VV(y)] = [ViW(x, 2) = V. W(y, 2)])

< bo(r)lx — |
(11)
holds for any x,y,z € RY with |x — y| = r.
@ Assume that by(r) is a continuous function on (0, 4+00)
satisfying
b
lim sup bo(r) 0, (12)

r—-+o0o r

i.e. the drift of one particle is dissipative at infinity.



Coupling method

Important reference function h for coupling method
First introduced by Wu. 2009 JFA

@ Let h: RT — R™ be the function determined by: h(0) =0

and
/ 1 1 r —+00 1 s
h(r)=—exp|—= bo(s)ds sexp | — bo(u)du | ds.
4 4 Jo r 4 Jo
(13)
It is a well defined C? function by the dissipative condition
(12).

e For any function f € C%(0,+00) and r > 0, let L,er be the
generator defined by

Lrerf(r) :=4f"(r) + bo(r)f'(r). (14)
@ h is a solution of the one-dimensional Poisson equation
Lrerh(r) = 4h"(r) + bo(r)h'(r) = —r, r >0 (15)
with h(0) = 0.



Coupling method

Key assumption

We make the following key assumption on the interaction potential:

(H) : VWil oo < 1

where V3 W = (8)“29}, W)i<ij<d, and

IV, Wl := sup  sup |Vi,W(x,y)z|.
x,y€RY zeRY | z|=1

@ When the dissipativity at infinity condition (12) is satisfied,
bo(r) can be taken as —cir + ¢ (with ¢1, ¢ > 0), so
[H[|oo := sup,~q h'(r) < +o0.

@ Notice that under the assumption (H) and dissipative
condition (12), both the McKean-Vlasov SDE and the mean
field interacting particle system have unique strong solutions.



Coupling method

Key assumption - continued

We make the following key assumption on the interaction potential:

(H) : VWil oo < 1

where V3 W = (8)“29}, W)i<ij<d, and

Vi Wl = sup  sup [V3,W(x,y)z.
x,y€RY zeRY | z|=1

e Condition (H) is a translation of Dobrushin-Zegarlinski's
uniqueness condition in the framework of mean field, and it
implies that the mean field has no phase of transition (see
Guillin-L.-Wu-Zhang(2022 AAP)).

@ This condition generalizes the convexity requirement of V' and
W in the previous results, which is our main contribution.



Coupling method
®000

Exponential convergence

Assume (12) and (H). Suppose that IM € R s.t.

bo(r) < rM,¥r >0 (16)
then for any € > 0 such that

i L IVEWloollB oo = e(M + V5, Wllec)

: 0, (17
: Wl +< (17)

we have for any xp, yo € (R9)N
Wo, (P (x0,), P (30, )) < Ace™“tdn (30, y0), ¥E 2 0, (18)

where

h
A: = sup 70) n er'

- su 19
r~0 h(r) +er r>g r (19)
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oe00

Uniform in time propagation of chaos

Suppose that by(r) < rM,¥r > 0, for some M € R. For any e > 0
such that K. > 0, and € € (0, c1 — c3 — || V3, W||), we have

@ (Uniform in time propagation of chaos) for all time t > 0
and any 1 < k < N:

1,k],N k
Wag (", ") < —s 2V, Wlo(ma(iio) A 2(6)
(20)
where py = updx is the solution of the McKean-Vlasov
equation, and u[t KN s the Jjoint law of the k particles

(XN 1< i< k) in the mean- fleld system of interacting
part/c/es (Xt’N)1<,<N with X0 1<i<Niid. of law g
(/ndependent Of( t )1§1§N,t20)
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coeo

Path-type propagation of chaos

o (Path-type propagation of chaos) for any T > 0,
1 < k <N, denote P,(-) = f(Rd)N P« (-)dv(x) the law of

(X"),20 with the initial distribution v, PN

law of paths of the k particles (X{")eepo, 7,1 < i < k) in
time interval [0, T], and Q,,, the law of the self-interacting
diffusion (X¢)¢>0 with the initial distribution py. We have

[0,7] the joint

1,k],N k
W1,dL1[0,T](P/ESaN] 10,775 Q,% 0,77)

kT IVE Wl ]l (21)
< - (mo (o) A €(€)).
VN=11—[|VZ,W|s| o0 (m2(p10) 1 €(€))




Coupling method
ocooe

Exponential convergence of the nonlinear McKean-Vlasov

equation

Corollary

Under the same assumptions as in the Theorem above, for any
€ > 0 so that K. > 0, we have for the solutions pi;,v: of the
self-interacting diffusion (3) with the initial distributions L, 1o
which have finite second moments respectively,

Wa (e, ve) < Ace Kt Wi (o, vo), Yt >0, (22)

where K. and A. are given by (17) and (19) respectively.
Especially, by taking vog = o, we get

WA (e, proo) < Ace™ T Wi (1o, pioc), Vt > 0. (23)
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®0

Example 1 - Curie-Weiss model

Let d =1, and
V(x) = B(X4/4 - x2/2), W(x,y) = —BKxy

where 3 > 0 is the inverse temperature. This model is
ferromagnetic or anti-ferromagnetic according to K > 0 or K < 0.

o bo(r) = Br(1—r?/4), Yr > 0. It is obvious that conditions on
bo are satisfied and bo(r) < fr (i.e. M =p).

° ||V>2<yW||Oo = |K|pB, assumption (H) holds once if

|K|y/mpe?/* <1 (24)



Coupling method
oce

Example 2 - Double-Well confinement potential and

quadratic interaction

Let d =1, and
V(x) = B(x*/4 = x*/2), W(x,y) = BK(x — y)?

where 5 > 0 is the inverse temperature, K € R.
o bo(r) = Br(l —2K — r?/4), Vr > 0. M = B(1 — 2K)
@ Assumption (H) holds once if

(25)

NI N[

2|K|/mBe2K18/4 <1 if K<
2|K|y/7B < 1, if K>
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Functional inequalities

Functional inequalities such as Poincaré, optimal transportation or
logarithmic Sobolev inequalities have nowadays an important
impact on various fields of mathematics (probability, PDE,
statistics,...) due to their various properties such as

@ convergence to equilibrium (in L2 or in entropy)

@ concentration of measure (exponential or gaussian), see the
book of Ledoux or F.Y. Wang.

Main goals: for the invariant measure M(N), we establish
& uniform Poincaré inequalities (in the number of particles N).
@ uniform logarithmic Sobolev inequalities.

& exponential entropic decay for non-linear McKean-Vlasov
equation, based on the uniform logarithmic Sobolev
inequalities and propagation of chaos.



Functional inequalities

Relative entropy and Logarithmic Sobolev inequality

@ The relative entropy of a probability measure v w.r.t. the
given probability measure 1 on RY:

2 2,9 _ 2 : 2._ dv
H(vlpr) = {f f¢log f*dp = Ent,(f¢), if v <<. p, f2 = ge
400, otherwise.
(26)
@ Logarithmic Sobolev inequality:
(LSI) CEnt,(f?) < 2/Vf|2d,u (27)

@ Exponential convergence of the Markov semigroups P;

H (el i) < €= H(po| ).
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Pl and LSI

@ One crucial property: tensorization (or dimension free), i.e.

1 satisfies Pl or LSl = u®N satisfies the same inequality

with the same constant (and thus independent of N).
This leads for example to

e (non asymptotic) Gaussian deviation inequalities
e convergence to equilibrium independent of the number of
particles.
@ However interesting physical systems are far from being

independent, such as

@ spin systems

e mean field models
with a particular emphasis on the dependence on the number
of spins or particles.



Functional inequalities
Framework and main assumptions

We work in the following framework.

(H1) The confinement potential V : R? — R is C2-smooth,
Hess(V) is bounded from below and there are two positive
constants ci, ¢ such that

x-VV(x) > ca|x|* — e, x € R%. (28)

(H2) The pairwise interaction potential W : R? x RY — R is
C2-smooth such that its Hessian V2W is bounded and

//<Rd)2 exp (~[V(x) + V(y) + AW (x,)]) dxdy < +00, YA > 0.



Functional inequalities
Framework and main assumptions - continued

(H3) (Lipschitz spectral gap condition for one particle) the
following constant is finite

1 [ 1 [°
CLip = — / exp { / bo(u)du} sds(= H'(0)) < +o0
4 Jo 4 Jo
(29)
where bo(r) is the dissipativity rate of the drift of one particle
in the system at distance r > 0:

bo(r)=  sup (2 (VV(x) = VV(y))
x,y,zERY: | x—y|=r |X _)/|
+(VxW(x,z) = Vi W(y, 2))).
(30)




Functional inequalities
[ I}

Uniform log-sobolev inequality for mean-field z(V)

Assume that
e for some best constant prs > 0, the conditional marginal
distributions p; == u;(dx;|x') on RY satisfy the log-Sobolev
inequality for all i and x' ;:

pLsEnt,, (%) < 2/|Vf|2du,~ (31)
o
Y0 = CLip sup |V>2<,y W(X,y)Z| <L (32)
x,y€ERY | z|=1

then p\N) satisfies

ps(l = o) Ent(f?) <2 [ [VFPau® (3
(RIN
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oce

Example: Curie-Weiss model

o V(x)=pB(x*/4 —x?/2), W(x,y) = —BKxy where 3 > 0.
@ As given before we have

i

Y0 < e Viy Wlleo < V/rBe? K| < 1,

e So

if B or K is sufficiently small.



Functional inequalities
[ Jelelelolote}

log-Sobolev inequality: from IPS to McKean-Vlasov

@ The log-Sobolev inequality for (") can be rewritten as
prs(pMYHw ™M) < 21(w[p™), v e My((R)Y). (34)

From IPS to McKean-Vlasov: let N — oo!
@ The Fisher-Donsker-Varadhan's information of v w.r.t. u is

defined by
VVFdp, i fi=,/9% € H]
I(v|p) == JIVVEPdu, ity <,V dp =k
+00, otherwise
(35)
where

= {g e P(u /IVgI dp < 400}

is the domain of the Dirichlet form E,[g] = [ |Vg|?dpu.



Functional inequalities
[e] Telelolole}

Identification of the free energy as rate function

Lemma (L.-Wu 2020SPA)

For any probability measure v on RY such that H(v|a) < 400,

%H(y@@"’m("’)) — Hw(v), as N — +oc. (36)
Recall that
Ef(v) .= H(v|a) + / W(x,y)dv(x)dv(y)
*]
H =E — inf  Ew(?
w(v) := Ew(v) sennf o w ()

@ Hy(v) can be identified as the mean relative entropy per
particle of v®N w.r.t. the mean field Gibbs measure ;(V).



Functional inequalities
00®0000

Fisher-Donsker-Varadhan's information

Lemma

(convergence of the Fisher information) /f /(v|a) < +oo, then

%/@@Nm(“’)) s Iw(v), as N — +oo. (37)

Iw(v) can be also interpreted as the mean
Fisher-Donsker-Varadhan's information per particle:

If dv(x) = f(x)dx, [ga [x|?dv(x) < +o0 and VF € Li (RY) in the
distribution sense,

w(v) = ‘1‘/Rd

and +oo otherwise.

2
Vfi)(:)() + VV(x)+ (VW ®v)(x)| dv(x),

(38)
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[eleleY Yolole}

LSI: from particles system to McKean-Vlasov

o
prsH|n™M) < 21(v]pM)
° 1
NH(V@WW(N)) — Hy(v), as N — +oc.
o

1
N/(V@W\M(N)) — lw(v), as N — +oc.

= LSI for nonlinear McKean-Vlasov equation:

PLSHW(V) S 2lw(V)
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[eleleleY Tole}

Exponential convergence of McKean-Vlasov equation

Assume the uniform marginal log-Sobolev inequality, i.e. (31) with
pLs,m > 0, and the uniqueness condition (32). Then

(1) there exists a unique minimizer po, of Hy over My(R9);

(2) the following (nonlinear) log-Sobolev inequality

pHw () < 2lw(p), p € My(RY) (39)

holds, where

p:=limsup prs(™) > ps(1 —~0)%;

N—o0

(3) given the initial distribution o of finite second moment,

Hyw () < e P2 Hyp (o), t > 0 (40)
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000000

Conclusions and future works

o Generalize the result of Carrillo-McCann-Villani(2003) from

the convex framework — non-convex case, by
(1) first for the interacting particle system:

e coupling method
e functional inequalities

(2) then nonlinear McKean-Vlasov equation by letting
N — oo:

e propagation of chaos.

o Example:

V(x) = B(x*/4 — x*/2) and W(x) = —BKx?/2

o Future work: singular case!
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