Long-time behaviors of mean-field interacting particle systems and McKean-Vlasov equations

Wei Liu

Wuhan University

July 30 - Aug 2, 2023 @Tianjin, Tianjin University The 18th Workshop on Markov Processes and Related Topics

Based on joint works with A. Guillin, L. Wu and C. Zhang:

- Guillin-L.-Wu-Zhang, Ann. Appl. Prob., 2022 Uniform Poincaré inequalities and logarithmic Sobolev inequalities for mean field particle systems
- L.-Wu-Zhang, Commun. Math. Phys., 2021 Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equation
- L.-Wu, Stoch. Proc. Appl., 2020 Large deviations for empirical measures of mean-field Gibbs measures

• Guillin-L.-Wu-Zhang, J. Math. Purés Appl., 2021 The kinetic Fokker-Planck equation with mean field interaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

2 Coupling method

- Exponential convergence in W_1 distance
- Examples

③ Functional inequalities

- Uniform log-Sobolev inequality
- Exponential convergence of McKean-Vlasov equation in entropy

Outline Introduction Coupling method Functional inequalities

Mean-field interacting particle system

Consider the following interacting particle system:

 $dX_t^{i,N} = b_t(X_t^{i,N}, \boldsymbol{L}_t^N)dt + \sigma_t(X_t^{i,N}, \boldsymbol{L}_t^N)dB_t^i, 1 \le i \le N$

- $L_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{\chi_t^{i,N}}$ empirical measure
- coefficients

$$b: \mathbb{R}^+ \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^d$$
$$\sigma: \mathbb{R}^+ \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^{d \times m},$$

- B^1, \cdots, B^N independent BMs in \mathbb{R}^d
- $X_0^{1,N}, \cdots, X_0^{N,N}$ i.i.d., and independent of the BMs
- ♠ Two fundamental problems
 - $t \rightarrow \infty$: Long time behaviors (equilibrium)
 - $N \to \infty$: Macroscopic limit (part of Hilbert's 6th problem)

Outline	Introduction	Coupling method	Functional inequalities
_	 _		

From Microscopic to Macroscopic

 \diamond Macroscopic limit as $N \rightarrow \infty$ – part of Hilbert's 6th problem.

- Macroscopic limit: Hydrodynamic limit, Thermodynamic limit, Bose-Einstein condensation
- Boltzmann, Landau, McKean-Vlasov, Vlasov-type Kinetic equations, etc.
- Convergence rate
- Curse of dimensionality
- \heartsuit Mean field limit McKean-Vlasov SDE

$$dX_t = b_t(X_t, \mu_t)dt + \sigma_t(X_t, \mu_t)dB_t$$

where μ_t is the law of X_t .

Outline	Introduction	Coupling method	Functional inequalities
Mean field	d limit		

Mean field interacting particle system:

 $dX_t^{i,N} = b_t(X_t^{i,N}, \boldsymbol{L}_t^N)dt + \sigma_t(X_t^{i,N}, \boldsymbol{L}_t^N)dB_t^i, 1 \le i \le N \quad (1)$

Self-interacting nonlinear diffusion or distribution dependent SDE:

$$dX_t = b_t(X_t, \mu_t)dt + \sigma_t(X_t, \mu_t)dB_t$$
(2)

Kac's Propagation of chaos (as $N \to +\infty$)

- $X_t^{i,N} \Longrightarrow \mu_t$ in law
- $L_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^{i,N}} \Longrightarrow \mu_t$ in law
- Particles get independent when $N \rightarrow +\infty$ for k fixed:

$$(X^{1,N}_t,\cdots,X^{k,N}_t)\Longrightarrow (\mu_t)^{\otimes k}$$
 in law

Mean-field interacting particle systems have been extensively studied in recent 40 years due to their wide range of applications in several fields including *physics, chemistry, biology, economics, mean-field games, financial mathematics, social science, machine learning* and so on.

- Physics, Chemistry: ions and electrons in plasmas, molecules in a fluid, galaxies in large scale cosmological models
- Biology: collective behaviors, neuronal network
- Economics, finances and Social Science: opinion dynamics, consensus model, mean field games
- Machine learning: deep learning, artificial neural network, distribution sampling algorithm, stochastic algorithm

• etc...

Coupling method

Functional inequalities

History

(a) Mark Kac

(b) Anatoly Vlasov

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The story of these processes started with a stochastic toy model for the Vlasov equation of plasma proposed by Mark Kac in his paper *"Foundations of kinetic theory (1956)"*.

Figure:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In 1966 Henry P. McKean published his seminal paper "A class of Markov processes associated with non-linear parabolic equations".

Figure:

Known results

- Kac (1956,1958), stochastic toy model for the Vlasov kinetic equation of plasma
- McKean (1966,1967), non-linear parabolic equations
- Sznitman (1991), Topics in propagation of chaos, Saint-Flour lecture notes
- Propagation of chaos: Macroscopic limit of the interacting particle system as N → ∞. Méléard (1996), Benachour et al. (1998), Malrieu (2001,2003), Bolley et al. (2007,2010), Cattiaux et al. (2008), Jabin-Wang (2018), Durmus et al. (2020), L.-Wu-Zhang (2021), Lacker (2021), Delarue-Tse (2021), Guillin et al. (2021), etc.
- Existence and uniqueness, well-posedness, smoothness and regularization of the solutions, F.Y. Wang (2018-), X. Zhang and Röckner (2021), Li-Li-Xie (2020), Hammersley et al. (2021), Mishura-Veretennikov (2018), Buckdahn-Li-Peng-Rainer (2017), etc. (and the references therein)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Continued

- Large and moderate deviation principles:
 - Empirical measure: Léonard (1987), S. Feng (1994), Dupuis et al. (2015), J. Reygner (2018), L.-Wu (2020)
 - Weak interacting diffusions: Dawson-Gärtner (1987), Budhiraja-Dupuis-Fischer (2012), Hoeksema et al. (2020), L.-Wu (2023+),
 - Freidlin-Wentzell type LDP for McKean-Vlasov SDEs: Herrmann et al. (2008), Dos Reis et al. (2019), Yuan-suo (2019), L.-Song-Zhai-Zhang (2022), L.-Qiao-Zhu, Cheng-L.-Zhu (2023) etc.
- **CLT** Wang-Zhao-Zhu (2021), Yuan-Suo (2021)

Outline	Introduction	Coupling method	Functional inequalities
Continued			

- Long time behaviors of the McKean-Vlasov SDE and Interacting particle system as t → ∞. Carrillo-McCann-Villani (2003), Eberle et al. (2016, 2018), Luo-Wang (2016), Liang-Majka-Wang (2019), Liu-Wu-Zhang (2021), Guilin-L.-Wu-Zhang (2022), etc.
- Functional inequalities: Malrieu (2001,2003), Huang-Wang (2021), Guilin-L.-Wu-Zhang (2022), F.Y. Wang (2023).
- Kinetic case: Villani(2009), Mouhot et al. (2015, 2016), Herzog-Mattingly (2019), lu-Mattingly (2020), Guillin-L.-Wu-Zhang (2021), Bao-Wang (2023)
- Others: numerical approximation, slow-fast, switching regime, path-dependent, delayed, with reflection, SPDE, Mean-field control...
- Other noises: fractional BM, Lévy, α-stable, GBM...

• Consider the following nonlinear McKean-Vlasov equation

$$dX_t = \sqrt{2}dB_t - \nabla V(X_t)dt - \nabla_X W \circledast \mu_t(X_t)dt \qquad (3)$$

• confinement potential
$$V : \mathbb{R}^d \to \mathbb{R}$$

• interaction potential $W : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, $W(x, y) = W(y, x)$
• $\nabla_x W \circledast \mu_t(X_t) := \int_{\mathbb{R}^d} \nabla_x W(X_t, y) \mu_t(dy)$

• The corresponding nonlinear Fokker-Planck equation

$$\partial_t \mu_t = \Delta \mu_t + \nabla \cdot \left[\mu_t (\nabla V + \nabla_x W \circledast \mu_t) \right]$$
(4)

Long time behavior

Two important questions:

 Existence and uniqueness of the equilibrium state, i.e. the limit μ_∞ := lim_{t→∞} μ_t. μ_∞ satisfies the following stationary equation (see Liu-Wu 2020 SPA):

$$\triangle \mu_{\infty} + \nabla \cdot [\mu_t (\nabla V + \nabla_x W \circledast \mu_t)] = 0$$

 $\mu_{\infty}(dx) = \exp(-V(x) - W * \mu_{\infty}(x))dx/C.$

• Convergence rate to the limit (exponential or algebraic).

Outline	Introduction	000000	OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
Free energy			

• The free energy of the state ν is given by

$$E_{W}(\nu) := H(\nu|\alpha) + \frac{1}{2} \iint W(x,y) d\nu(x) d\nu(y)$$

= $H(\nu|\exp(-V(x) - \frac{1}{2}W \circledast \nu)) + c$ (5)

where

$$\alpha(dx) = e^{-V(x)} dx / C.$$

- The solution μ_{∞} of the stationary equation of the nonlinear McKean-Vlasov equation is the critical point of E_W .
- Mean field entropy

$$H_{\mathcal{W}}(\nu) := E_{\mathcal{W}}(\nu) - \inf_{\mu \in \mathcal{M}_1(S)} E_{\mathcal{W}}(\mu), \ \nu \in \mathcal{M}_1(S)$$
 (6)

is just the LDP rate function of the empirical measure for mean field Gibbs measure (L.-Wu 2020SPA).

Outline	Introduction	Coupling method	Functional inequalities

Carrillo-McCann-Villani's result 2003RMI

Assume that

 $\nabla^2 V \ge \gamma I, \gamma > 0$

and $W(x,y) = W_0(x-y)$ with W_0 even and convex. Then $H_w(\mu_t) \le e^{-\gamma t} H_W(\mu_0).$

Strategy of the proofs:

• Gradient flow of the free energy, i.e.

 $\partial_t \mu_t = -\nabla H_W(\mu_t).$

• Strictly displacement convex along geodesic, i.e.

 $\nabla^2 H_W(\mu_t) \geq C > 0.$

• Logarithmic Sobolev inequalities and mass transportation inequalities, via either the *Bakry-Emery method*,

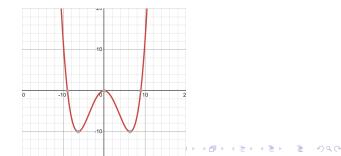
Our motivations and goals

Remove the convexity assumption on V and W!

Example: Curie-Weiss model

$$V(x) = \beta(x^4/4 - x^2/2), \ W(x, y) = -\beta Kxy$$

where $\beta > 0$ is the inverse temperature. This model is called ferromagnetic (K > 0) or anti-ferromagnetic (K < 0).



McKean-Vlasov SDE:

$$\begin{cases} dX_t = \sqrt{2} dB_t - \nabla V(X_t) dt - \nabla_x W \circledast \mu_t(X_t) dt, \\ \nabla_x W \circledast \mu_t(X_t) = \int \nabla_x W(X_t, y) \mu_t(dy), \end{cases}$$

Mean field interacting particle system

$$\begin{cases} dX_t^{i,N} = \sqrt{2}dB_t^i - \nabla V(X_t^{i,N})dt - \frac{1}{N-1}\sum_{j:j\neq i,1\leq j\leq N} \nabla_X W(X_t^{i,N}, X_t^{j,N})dt, \\ X_0^{i,N} = X_0^i, \ i = 1, \cdots, N, \end{cases}$$

Our Strategy:

- Long-time behavior of IPS: Coupling method, Functional inequalities.
- From IPS to McKean-Vlasov: Propagation of chaos.

• Mean field interacting particle system

 $dX_t^{i,N} = b(X_t^{i,N}, L_t^N)dt + \sigma(X_t^{i,N}, L_t^N)dB_t^i$ (7)

• Consider the following independent particle system:

 $d\bar{X}_t^i = b(\bar{X}_t^i, \mu_t)dt + \sigma(\bar{X}_t^i, \mu_t)dB_t^i, 1 \le i \le N$ (8)

- $\bar{X}_0^1, \dots, \bar{X}_0^N$ i.i.d., and independent of the BMs • $\bar{X}_t^1, \dots, \bar{X}_t^N$ i.i.d. with common law μ_t
- Sznitman (1991, Synchronous Coupling)

when b is bounded Lipschitz and σ is constant

$$\mathbb{E}[\sup_{0\leq t\leq T}|X_t^{i,N}-\bar{X}_t^i|]\leq \frac{C(T)}{\sqrt{N}}.$$

Other results by Méléard (1996), Benachour et al. (1998)... in bounded time intervals, but Not uniform in time! Outline Introduction Coupling method Functional inequalities

Uniform in time propagation of chaos

Uniform in time propagation of chaos is much more difficult!

• For any $t \ge 0$ and $1 \le i \le N$,

۲

$$W_p(\mu_t^{i,N},\mu_t) \leq rac{C}{\sqrt{N}}, p=1,2$$

$$H(\mu_t^{i,N}|\mu_t) \leq \frac{C}{\sqrt{N}}.$$

- Convex potentials: Malrieu (2001, 2003), Cattiaux et al. (2008), Bolley et al. (2010), Lacker (2023)
- Non-convex potentials: Durmus et al. (2020), L.-Wu-Zhang (2021 CMP)
- Singular case: Jabin-Wang (2018), Delarue-Tse (2021), Guillin et al. (2021), Hao-Röckner-Zhang (2022)
- Methods: Coupling, Functional inequalities, BBGKY Strategy...

Coupling method

Coupling method

Functional inequalities

Approximate componentwise reflection coupling

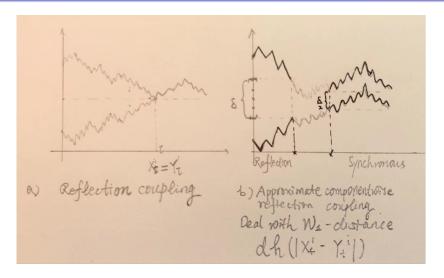


Figure:

・ロト ・聞ト ・ヨト ・ヨト

Functional inequalities

Approximate componentwise reflection coupling First introduced by A.Eberle (PTRF 2016)

$$dX_{t}^{i,N} = \sqrt{2} [\lambda_{\delta}(|Z_{t}^{i}|) dB_{t}^{1,i} + \pi_{\delta}(|Z_{t}^{i}|) dB_{t}^{2,i}] - \nabla V(X_{t}^{i,N}) dt - \frac{1}{N-1} \sum_{j:j \neq i, 1 \leq j \leq N} \nabla_{x} W(X_{t}^{i,N}, X_{t}^{j,N}) dt, dY_{t}^{i,N} = \sqrt{2} [\lambda_{\delta}(|Z_{t}^{i}|) R_{t}^{i} dB_{t}^{1,i} + \pi_{\delta}(|Z_{t}^{i}|) dB_{t}^{2,i}] - \nabla V(Y_{t}^{i,N}) dt - \frac{1}{N-1} \sum_{j:j \neq i, 1 \leq j \leq N} \nabla_{x} W(Y_{t}^{i,N}, Y_{t}^{j,N}) dt,$$
(9)

λ_δ(r)² + π_δ(r)² = 1, λ_δ(r) = 1 if r ≥ δ, λ_δ(r) = 0 if r ≤ δ/2.
Z_tⁱ := X_t^{i,N} - Y_t^{i,N} and R_tⁱ := I_d - 2e_tⁱ(e_tⁱ)^T, where e_tⁱ(e_tⁱ)^T is the orthogonal projection onto the unit vector e_tⁱ := Z_tⁱ/|Z_tⁱ|.
Strategy for proofs: choose appropriate reference h and use Itô's formula for h(|Z_tⁱ|). Then let δ → 0.

Coupling method

Functional inequalities

Notations of IPS

- \mathbb{P}_x : law of $X^{(N)} = (X_t^{1,N}, \cdots, X_t^{N,N})_{t \ge 0}$ with initial value $X_0^{(N)} = x \in (\mathbb{R}^d)^N$.
- $\{P_t^{(N)}\}_{t\geq 0}$: transition semigroup
- $\mathcal{L}^{(N)}$: generator of $(X_t^{1,N},\cdots,X_t^{N,N})$ is given by

$$\mathcal{L}^{(N)}f(x_1,\cdots,x_N) = \sum_{i=1}^N \mathcal{L}_i^{(N)}f(x_1,\cdots,x_N)$$
$$\mathcal{L}_i^{(N)}f(x_1,\cdots,x_N) := \Delta_i f(x_1,\cdots,x_N) - \nabla_i V(x_i) \cdot \nabla_i f(x_1,\cdots,x_N)$$
$$-\frac{1}{N-1} \sum_{j \neq i} (\nabla_x W)(x_i,x_j) \cdot \nabla_i f(x_1,\cdots,x_N)$$
(10)

for any smooth function f on $(\mathbb{R}^d)^N$.

Outline

Invariant probability measure

• The unique invariant probability measure:

$$\mu^{(N)}(dx_1,\cdots,dx_N)=\frac{1}{Z_N}\exp\left\{-H_N(x_1,\cdots,x_N)\right\}dx_1\cdots dx_N$$

where

$$H_N(x_1, \cdots, x_N) := \sum_{i=1}^N V(x_i) + \frac{1}{N-1} \sum_{1 \le i < j \le N} W(x_i, x_j)$$

is the Hamiltonian, and Z_N is the normalization constant called *partition function* in statistical mechanics, which is assumed to be finite.

• Without interaction (i.e. W = 0 or constant), $\mu^{(N)} = \alpha^{\otimes N}$ (i.e. the particles are independent), where

$$d\alpha(x) = \frac{1}{C}e^{-V(x)}dx, \ C = \int_{\mathbb{R}^d} e^{-V(x)}dx.$$

Dutline	Introduction	Coupling method	Functional inequalities

Conditions on the dissipative rate

Dissipative rate b₀(r) of the drift of one single particle at distance r > 0,

 $\langle x - y, -[\nabla V(x) - \nabla V(y)] - [\nabla_x W(x, z) - \nabla_x W(y, z)] \rangle$ $\leq b_0(r) |x - y|$ (11)

holds for any $x, y, z \in \mathbb{R}^d$ with |x - y| = r.

• Assume that $b_0(r)$ is a continuous function on $(0, +\infty)$ satisfying

$$\limsup_{r \to +\infty} \frac{b_0(r)}{r} < 0, \tag{12}$$

i.e. the drift of one particle is *dissipative at infinity*.

Important reference function h for coupling method First introduced by Wu. 2009 JFA

• Let $h: \mathbb{R}^+ \to \mathbb{R}^+$ be the function determined by: h(0) = 0 and

$$h'(r) = \frac{1}{4} \exp\left(-\frac{1}{4} \int_0^r b_0(s) ds\right) \int_r^{+\infty} s \cdot \exp\left(\frac{1}{4} \int_0^s b_0(u) du\right) ds.$$
(13)

It is a well defined C^2 function by the dissipative condition (12).

• For any function $f \in C^2(0, +\infty)$ and r > 0, let \mathcal{L}_{ref} be the generator defined by

$$\mathcal{L}_{ref}f(r) := 4f''(r) + b_0(r)f'(r).$$
(14)

• *h* is a solution of the *one-dimensional Poisson equation*

$$\mathcal{L}_{ref} h(r) = 4h''(r) + b_0(r)h'(r) = -r, \ r > 0$$
 (15)

with h(0) = 0.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ⊙ < ⊙

Coupling method

Functional inequalities

Key assumption

We make the following key assumption on the interaction potential:

 $(\mathbf{H}): \|\nabla_{xy}^2 W\|_{\infty} \|h'\|_{\infty} < 1$

where
$$abla^2_{xy}W = (rac{\partial^2}{\partial x_i\partial y_j}W)_{1\leq i,j\leq d}$$
, and

$$\|\nabla_{xy}^2 W\|_{\infty} := \sup_{x,y \in \mathbb{R}^d} \sup_{z \in \mathbb{R}^d, |z|=1} |\nabla_{xy}^2 W(x,y)z|.$$

- When the dissipativity at infinity condition (12) is satisfied, $b_0(r)$ can be taken as $-c_1r + c_2$ (with $c_1, c_2 > 0$), so $||h'||_{\infty} := \sup_{r \ge 0} h'(r) < +\infty$.
- Notice that under the assumption (H) and dissipative condition (12), both the McKean-Vlasov SDE and the mean field interacting particle system have *unique strong solutions*.

Key assumption - continued

We make the following key assumption on the interaction potential:

 $(\mathbf{H}): \|\nabla_{xy}^2 W\|_{\infty} \|h'\|_{\infty} < 1$

where
$$abla^2_{xy} W = (rac{\partial^2}{\partial x_i \partial y_j} W)_{1 \leq i,j \leq d}$$
, and

$$\|\nabla_{xy}^2 W\|_{\infty} := \sup_{x,y \in \mathbb{R}^d} \sup_{z \in \mathbb{R}^d, |z|=1} |\nabla_{xy}^2 W(x,y)z|.$$

- Condition (H) is a translation of Dobrushin-Zegarlinski's uniqueness condition in the framework of mean field, and it implies that the mean field has *no phase of transition* (see Guillin-L.-Wu-Zhang(2022 AAP)).
- This condition generalizes the convexity requirement of *V* and *W* in the previous results, which is our main contribution.

Coupling method

Functional inequalities

Exponential convergence

Theorem

Assume (12) and (**H**). Suppose that $\exists M \in \mathbb{R} \ s.t.$

$$b_0(r) \le rM, \forall r > 0 \tag{16}$$

then for any $\varepsilon > 0$ such that

$$\mathcal{K}_{\varepsilon} := \frac{1 - \|\nabla_{xy}^2 W\|_{\infty} \|h'\|_{\infty} - \varepsilon (M + \|\nabla_{xy}^2 W\|_{\infty})}{\|h'\|_{\infty} + \varepsilon} > 0, \quad (17)$$

we have for any $x_0, y_0 \in (\mathbb{R}^d)^N$

 $W_{d_{l^{1}}}(P_{t}^{(N)}(x_{0},\cdot),P_{t}^{(N)}(y_{0},\cdot)) \leq A_{\varepsilon}e^{-K_{\varepsilon}t}d_{l^{1}}(x_{0},y_{0}), \ \forall t \geq 0, \ (18)$

where

$$A_{\varepsilon} = \sup_{r>0} \frac{r}{h(r) + \varepsilon r} \cdot \sup_{r>0} \frac{h(r) + \varepsilon r}{r}.$$
 (19)

Coupling method

Functional inequalities

Uniform in time propagation of chaos

Theorem

Suppose that $b_0(r) \leq rM, \forall r > 0$, for some $M \in \mathbb{R}$. For any $\epsilon > 0$ such that $K_{\epsilon} > 0$, and $\tilde{\epsilon} \in (0, c_1 - c_3 - \|\nabla^2_{xy}W\|_{\infty})$, we have

 (Uniform in time propagation of chaos) for all time t > 0 and any 1 ≤ k ≤ N:

$$W_{1,d_{l^1}}(\mu_t^{\otimes k},\mu_t^{[1,k],N}) \leq \frac{k}{\sqrt{N-1}} \frac{A_{\epsilon}}{K_{\epsilon}} \|\nabla_{xy}^2 W\|_{\infty}(m_2(\mu_0) \wedge \hat{c}(\epsilon))$$
(20)

where $\mu_t = u_t dx$ is the solution of the McKean-Vlasov equation, and $\mu_t^{[1,k],N}$ is the joint law of the k particles $(X_t^{i,N}, 1 \le i \le k)$ in the mean-field system of interacting particles $(X_t^{i,N})_{1 \le i \le N}$ with $X_0^{i,N}, 1 \le i \le N$ i.i.d. of law μ_0 (independent of $(B_t^{i,N})_{1 \le i \le N, t \ge 0}$).

Path-type propagation of chaos

Theorem

• (Path-type propagation of chaos) for any T > 0, $1 \le k \le N$, denote $P_{\nu}(\cdot) = \int_{(\mathbb{R}^d)^N} P_x(\cdot) d\nu(x)$ the law of $(X_t^{(N)})_{t\ge 0}$ with the initial distribution ν , $P_{\nu}^{[1,k],N}|_{[0,T]}$ the joint law of paths of the k particles $((X_t^{i,N})_{t\in[0,T]}, 1\le i\le k)$ in time interval [0, T], and Q_{μ_0} the law of the self-interacting diffusion $(X_t)_{t>0}$ with the initial distribution μ_0 . We have

$$W_{1,d_{L^{1}[0,T]}}(P_{\mu_{0}^{\otimes N}}^{[1,k],N}|_{[0,T]}, Q_{\mu_{0}}^{\otimes k}|_{[0,T]}) \\ \leq \frac{kT}{\sqrt{N-1}} \frac{\|\nabla_{xy}^{2}W\|_{\infty} \|h'\|_{\infty}}{1-\|\nabla_{xy}^{2}W\|_{\infty} \|h'\|_{\infty}} \cdot (m_{2}(\mu_{0}) \wedge \hat{c}(\epsilon)).$$

$$(21)$$

Exponential convergence of the nonlinear McKean-Vlasov equation

Corollary

Under the same assumptions as in the Theorem above, for any $\varepsilon > 0$ so that $K_{\varepsilon} > 0$, we have for the solutions μ_t, ν_t of the self-interacting diffusion (3) with the initial distributions μ_0, ν_0 which have finite second moments respectively,

 $W_1(\mu_t,\nu_t) \le A_{\varepsilon} e^{-K_{\varepsilon}t} W_1(\mu_0,\nu_0), \ \forall t \ge 0,$ (22)

where K_{ε} and A_{ε} are given by (17) and (19) respectively. Especially, by taking $\nu_0 = \mu_{\infty}$, we get

 $W_1(\mu_t, \mu_\infty) \le A_{\varepsilon} e^{-K_{\varepsilon} t} W_1(\mu_0, \mu_\infty), \ \forall t \ge 0.$ (23)

Example 1 - Curie-Weiss model

Let d = 1, and

$$V(x) = \beta(x^4/4 - x^2/2), \ W(x, y) = -\beta Kxy$$

where $\beta > 0$ is the inverse temperature. This model is ferromagnetic or anti-ferromagnetic according to K > 0 or K < 0.

- $b_0(r) = \beta r(1 r^2/4), \forall r > 0$. It is obvious that conditions on b_0 are satisfied and $b_0(r) \le \beta r$ (i.e. $M = \beta$).
- $\|
 abla_{xy}^2 W \|_{\infty} = |K| eta$, assumption (H) holds once if

$$|K|\sqrt{\pi\beta}e^{\beta/4} \le 1 \tag{24}$$

 Outline
 Introduction
 Coupling method 00000
 Functional inequalities

 Example 2 - Double-Well confinement potential and quadratic interaction
 and

Let d = 1, and

 $V(x) = \beta(x^4/4 - x^2/2), \ W(x,y) = \beta K(x-y)^2$

where $\beta > 0$ is the inverse temperature, $K \in \mathbb{R}$.

•
$$b_0(r) = \beta r(1 - 2K - r^2/4), \ \forall r > 0. \ M = \beta(1 - 2K)$$

Assumption (H) holds once if

$$\begin{cases} 2|\mathcal{K}|\sqrt{\pi\beta}e^{(1-2\mathcal{K})^2\beta/4} \le 1, & \text{if } \mathcal{K} \le \frac{1}{2}\\ 2|\mathcal{K}|\sqrt{\pi\beta} \le 1, & \text{if } \mathcal{K} > \frac{1}{2}. \end{cases}$$
(25)

Functional inequalities

Functional inequalities

Functional inequalities such as *Poincaré*, *optimal transportation* or *logarithmic Sobolev inequalities* have nowadays an important impact on various fields of mathematics (probability, PDE, statistics,...) due to their various properties such as

- convergence to equilibrium (in L^2 or in entropy)
- concentration of measure (exponential or gaussian), see the book of Ledoux or F.Y. Wang.

Main goals: for the invariant measure $\mu^{(N)}$, we establish

- uniform Poincaré inequalities (in the number of particles N).
- \heartsuit uniform logarithmic Sobolev inequalities.
- exponential entropic decay for non-linear McKean-Vlasov equation, based on the uniform logarithmic Sobolev inequalities and propagation of chaos.

Relative entropy and Logarithmic Sobolev inequality

 The relative entropy of a probability measure ν w.r.t. the given probability measure μ on R^d:

$$H(\nu|\mu) := \begin{cases} \int f^2 \log f^2 d\mu = \operatorname{Ent}_{\mu}(f^2), & \text{if } \nu \ll \mu, f^2 := \frac{d\nu}{d\mu} \\ +\infty, & \text{otherwise.} \end{cases}$$
(26)

• Logarithmic Sobolev inequality:

$$(LSI) \quad CEnt_{\mu}(f^2) \le 2 \int |\nabla f|^2 d\mu \qquad (27)$$

• Exponential convergence of the Markov semigroups P_t

$$H(\mu_t|\mu) \leq e^{-Ct} H(\mu_0|\mu).$$

• One crucial property: *tensorization* (or dimension free), i.e.

 μ satisfies PI or LSI $\Rightarrow \mu^{\otimes N}$ satisfies the same inequality

with the same constant (and thus independent of N). This leads for example to

- (non asymptotic) Gaussian deviation inequalities
- convergence to equilibrium independent of the number of particles.
- However interesting physical systems are far from being independent, such as
 - spin systems
 - mean field models

with a particular emphasis on the dependence on the number of spins or particles.

Outline	Introduction	Coupling method	Functional inequalities
-			

Framework and main assumptions

We work in the following framework.

(H1) The confinement potential $V : \mathbb{R}^d \to \mathbb{R}$ is C^2 -smooth, $\operatorname{Hess}(V)$ is bounded from below and there are two positive constants c_1, c_2 such that

$$x \cdot \nabla V(x) \ge c_1 |x|^2 - c_2, \ x \in \mathbb{R}^d.$$
(28)

(H2) The pairwise interaction potential $W : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is C^2 -smooth such that its Hessian $\nabla^2 W$ is bounded and

$$\iint_{(\mathbb{R}^d)^2} \exp\left(-\left[V(x)+V(y)+\lambda W(x,y)\right]\right) dxdy < +\infty, \ \forall \lambda > 0.$$

Framework and main assumptions - continued

(H3) (Lipschitz spectral gap condition for one particle) the following constant is finite

$$c_{Lip} := \frac{1}{4} \int_0^\infty \exp\left\{\frac{1}{4} \int_0^s b_0(u) du\right\} s ds (= h'(0)) < +\infty$$
(29)
where $b_0(r)$ is the *dissipativity rate* of the drift of one particle
in the system at distance $r > 0$:

$$b_{0}(r) = \sup_{x,y,z \in \mathbb{R}^{d}: |x-y|=r} -\langle \frac{x-y}{|x-y|}, (\nabla V(x) - \nabla V(y)) + (\nabla_{x} W(x,z) - \nabla_{x} W(y,z)) \rangle.$$
(30)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uniform log-sobolev inequality for mean-field $\mu^{(N)}$

Theorem

۲

Assume that

• for some best constant $\rho_{\rm LS} > 0$, the conditional marginal distributions $\mu_i := \mu_i(dx_i|x^i)$ on \mathbb{R}^d satisfy the log-Sobolev inequality for all i and x^i ;:

$$\rho_{\rm LS} \textit{Ent}_{\mu_i}(f^2) \le 2 \int |\nabla f|^2 \mathrm{d}\mu_i \tag{31}$$

$$\gamma_0 = c_{Lip} \sup_{x,y \in \mathbb{R}^d, |z|=1} |\nabla_{x,y}^2 W(x,y)z| < 1.$$
(32)

then $\mu^{(N)}$ satisfies $\rho_{\mathrm{LS}}(1-\gamma_0)^2 Ent_{\mu^{(N)}}(f^2) \le 2\int_{(\mathbb{R}^d)^N} |\nabla f|^2 d\mu^{(N)}$ (33)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Curie-Weiss model

•
$$V(x) = \beta(x^4/4 - x^2/2)$$
, $W(x, y) = -\beta Kxy$ where $\beta > 0$.

• As given before we have

$$c_{Lip} \leq \sqrt{rac{\pi}{eta}} \mathrm{e}^{eta/4}.$$

So

$$\gamma_0 \leq c_{Lip} \|
abla_{{\mathsf X},{\mathsf Y}}^2 {\mathsf W} \|_\infty \leq \sqrt{\pi eta} e^{eta/4} |{\mathsf K}| < 1,$$

if β or K is sufficiently small.

 \bullet The log-Sobolev inequality for $\mu^{({\it N})}$ can be rewritten as

 $\rho_{LS}(\mu^{(N)})H(\nu|\mu^{(N)}) \le 2I(\nu|\mu^{(N)}), \ \forall \nu \in \mathcal{M}_1((\mathbb{R}^d)^N).$ (34)

From IPS to McKean-Vlasov: let $N \to \infty$!

• The Fisher-Donsker-Varadhan's information of ν w.r.t. μ is defined by

$$I(\nu|\mu) := \begin{cases} \int |\nabla\sqrt{f}|^2 d\mu, & \text{if } \nu \ll \mu, \sqrt{f} := \sqrt{\frac{d\nu}{d\mu}} \in H^1_\mu \\ +\infty, & \text{otherwise} \end{cases}$$
(35)

where

$$H^1_\mu := \{ g \in L^2(\mu) : \int |
abla g|^2 d\mu < +\infty \}$$

is the domain of the Dirichlet form $\mathbb{E}_{\mu}[g] = \int_{\mathbb{C}} |\nabla g|^2 d\mu$.

Functional inequalities

Identification of the free energy as rate function

Lemma (L.-Wu 2020SPA)

For any probability measure ν on \mathbb{R}^d such that $H(\nu|\alpha) < +\infty$,

$$\frac{1}{N}H(\nu^{\otimes N}|\mu^{(N)}) \to H_W(\nu), \text{ as } N \to +\infty.$$
(36)

Recall that

۲

$$\mathsf{E}_{\mathsf{f}}(
u) := \mathsf{H}(
u|lpha) + rac{1}{2} \iint \mathsf{W}(x,y) d
u(x) d
u(y)$$

$$H_W(\nu) := E_W(\nu) - \inf_{\tilde{\nu} \in \mathcal{M}_1(\mathbb{R}^d)} E_W(\tilde{\nu})$$

• $H_W(\nu)$ can be identified as the mean relative entropy per particle of $\nu^{\otimes N}$ w.r.t. the mean field Gibbs measure $\mu^{(N)}$.

Outline	Introduction	Coupling method	Functional inequalities ○○○○●○○○○		
Fisher Donsker Varadhan's information					

Lemma

(convergence of the Fisher information) If $I(\nu|\alpha) < +\infty$, then

$$\frac{1}{N}I(\nu^{\otimes N}|\mu^{(N)}) \to I_W(\nu), \text{ as } N \to +\infty.$$
(37)

 $I_W(\nu)$ can be also interpreted as the mean Fisher-Donsker-Varadhan's information per particle: If $d\nu(x) = f(x)dx$, $\int_{\mathbb{R}^d} |x|^2 d\nu(x) < +\infty$ and $\nabla f \in L^1_{loc}(\mathbb{R}^d)$ in the distribution sense,

$$I_{W}(\nu) := \frac{1}{4} \int_{\mathbb{R}^{d}} \left| \frac{\nabla f(x)}{f(x)} + \nabla V(x) + (\nabla_{x} W \circledast \nu)(x) \right|^{2} d\nu(x),$$
(38)
and $+\infty$ otherwise.

۲

۲

۲

Functional inequalities

LSI: from particles system to McKean-Vlasov

$$\rho_{LS}H(\nu|\mu^{(N)}) \le 2I(\nu|\mu^{(N)})$$

$$rac{1}{N} H(
u^{\otimes N} | \mu^{(N)}) o H_W(
u), ext{ as } N o +\infty.$$

 $rac{1}{N} I(
u^{\otimes N} | \mu^{(N)}) o I_W(
u), ext{ as } N o +\infty.$

 \Rightarrow LSI for nonlinear McKean-Vlasov equation:

 $\rho_{LS}H_W(\nu) \leq 2I_W(\nu).$

Exponential convergence of McKean-Vlasov equation

Theorem

Assume the uniform marginal log-Sobolev inequality, i.e. (31) with $\rho_{LS,m} > 0$, and the uniqueness condition (32). Then (1) there exists a unique minimizer μ_{∞} of H_W over $\mathcal{M}_1(\mathbb{R}^d)$; (2) the following (nonlinear) log-Sobolev inequality

$$\rho H_{W}(\mu) \leq 2I_{W}(\mu), \ \mu \in \mathcal{M}_{1}(\mathbb{R}^{d})$$
(39)

holds, where

$$\rho := \limsup_{N \to \infty} \rho_{LS}(\mu^{(N)}) \ge \rho_{LS}(1 - \gamma_0)^2;$$

(3) given the initial distribution μ_0 of finite second moment,

$$H_W(\mu_t) \le e^{-t \cdot \rho/2} H_W(\mu_0), \ t \ge 0$$
 (40)

Conclusions and future works

- Generalize the result of Carrillo-McCann-Villani(2003) from the convex framework → non-convex case, by (1) first for the interacting particle system:
 - coupling method
 - functional inequalities

(2) then nonlinear McKean-Vlasov equation by letting $N \rightarrow \infty$:

• propagation of chaos.

• Example:

 $V(x) = \beta(x^4/4 - x^2/2)$ and $W(x) = -\beta K x^2/2$

• Future work: singular case!

Figure: Welcome to Wuhan University!

Thanks for your kind attention!